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Crystal-melt interfacial free energy of binary hard spheres from capillary fluctuations
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Using molecular-dynamics simulation coupled with an analysis of equilibrium capillary fluctuations in
interfacial position, we compute the magnitude and anisotropy of the interfacial free energy y for a binary
hard-sphere system with a diameter ratio @=0.9. This system, in which the fluid mixture coexists with a
randomly substituted face-centered-cubic solid solution, is a useful reference model for alloys. Our results
show that y increases with increasing mole fraction of the smaller sized particle when temperature is held
constant. However, after rescaling the results to fixed pressure and varying temperature, we find that y de-
creases with increased alloying by the smaller particle (corresponding to lower temperatures). Thus, 7y is seen
to decrease with increasing concentration of the lower melting point solute, consistent with earlier simulations
on Ni/Cu and Lennard-Jones mixtures. The anisotropy in v is such that the inequality ;00> 110> 111 holds
for all concentrations studied. Using the classification scheme of Haxhimali et al., [Nat. Mater. 5, 660 (2006)]

we find that the anisotropy in 7 is consistent with a predicted (100) primary dendrite growth direction.
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I. INTRODUCTION

The crystal-melt interfacial free energy, vy, is a primary
thermodynamic parameter governing the kinetics and mor-
phology of crystal growth from the melt,! and is defined as
the reversible work required to form a unit area of interface
between a crystal and a coexisting fluid.> Accurate values of
v are necessary for a full understanding of a number of tech-
nologically important interfacial phenomena in chemistry
and materials science. For example, the orientation depen-
dence of 1y, although generally small (1-4 % for most met-
als), has a significant effect on the shape and kinetics of
growing dendrites.’”

Experimentally, the majority of estimates for y are ob-
tained indirectly from measurements of nucleation kinetics,
interpreted using classical nucleation theory.>%? Such analy-
ses typically underestimate vy by about 10-20 %. Using this
method, Turnbull® reported the values of 7y for variety of
materials, mostly metallic elements. For pure materials, the
values of y determined by Turnbull exhibit a strong empiri-
cal correlation with the latent heat of fusion (AHj,), given
by the relation y=~ C;AH,p*>, where p is the number den-
sity of the crystal, and C; is the so-called Turnbull coeffi-
cient, which was reported by Turnbull to be approximately
0.45 for metals and 0.32 for many nonmetals and semimet-
als. Estimates of y from nucleation rates are orientational
averages and, thus, cannot be used to determine the aniso-
tropy in this quantity. More accurate direct experimental
measurements involving contact angle studies are quite dif-
ficult to perform and are, subsequently, relatively few in
number.'? In principle, contact angle measurements can be
used to determine the anisotropy in v, but, in practice, with a
few exceptions,'"!? they are not sufficiently precise for this
purpose. Recently, Napolitano et al. developed a quantitative
technique for measuring equilibrium crystal shapes from
which, through the use of a Wulff construction,? the aniso-
tropy (but not the magnitude) of vy can be determined accu-
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rately. They have applied their methods to Al-Si,'* Al-Cu,'*
and Al-Sn (Ref. 15) binary mixtures. In the later study, the
full three-dimensional Wulff construction was obtained, al-
lowing them to thoroughly map out the anisotropy of the
Al-Sn system.

The lack of accurate experimental measurements has mo-
tivated the development of a variety of molecular simulation
methods to determine y computationally. This effort has fo-
cused largely on two complimentary classes of simulation
techniques: cleaving methods, based on thermodynamic
integration,'®~'® and methods based on an analysis of capil-
lary fluctuations in interface position.'® Applications of these
methods have focused both on the determination of 7y for
realistic models of materials (e.g., metals'®?! or organic
materials®?) and for simple models, such as hard spheres,!’
soft spheres,'® and Lennard-Jones particles.?3-23

Most simulation studies, however, have focused primarily
on pure materials, and, to date, only a small number of stud-
ies have examined alloys.”?¢ In this work, we examine the
magnitude and anisotropy of a binary hard-sphere mixture,
composed of two components with differing particle diam-
eters in a ratio of 0.9. There are two main reasons for our
choice of system: first, hard spheres are an important refer-
ence system for simple fluids?’ and have shown to be an
accurate model for the interfacial thermodynamics of close-
packed crystal-forming pure materials,”® Second, Kranen-
donk and Frenkel” have determined accurate pressure-
composition phase diagrams for binary hard spheres with
diameter ratios of 0.85, 0.90, and 0.95. This is crucial be-
cause any study of interfacial thermodynamics must start
with an accurate phase diagram to correctly prepare a system
in solid-liquid coexistence.

In 2002, Asta et al.? used a capillary fluctuation method
(CFM) to determine the interfacial free energy of a Ni/Cu
alloy, at zero pressure, with equilibrium solidus and liquidus
copper mole fractions of 0.050 and 0.104, respectively. Their
simulations were performed using an embedded atom model
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(EAM) potential for Ni/Cu developed by Foiles.3* Their
model alloy system was found to have an orientationally
averaged y of 287*8 mJ m~2, which is about 7.4% lower
than that calculated for pure Ni. Thus, in this work, the value
of vy is predicted to decrease upon the addition of a lower
melting point solute (Cu). In addition, the anisotropy in vy for
this alloy system was found to be decreased slightly from
that of pure Ni.

More recently, in 2007, Becker et al.” examined, via
simulation, the magnitude and anisotropy of 7y for a binary
Lennard-Jones mixture. The interaction potential for this sys-

tem is
12 6
g;; g;i
V(rij)=4€ij|:<_1) —<_1) }
r,-j rl'j

where i and j index particle types (1 or 2) and o;; and ¢;;
determine the size and energy scales for the interaction.
Becker et al. examined a system with no size anisotropy (that
is, 01=0), but with a well-depth ratio €,/ €, equal to
0.75. Standard Lorentz-Berthelot mixing rules were used for
the mixed interactions. Like the Ni/Cu system studied by
Asta et al.,’® this L] mixture exhibits nearly ideal solution
behavior in the solid and liquid. Through an analysis of cap-
illary fluctuations, Becker et al., determined that the orienta-
tionally averaged value of 7, 7, varied smoothly from
0.355(8) to 0.267(8) €,/ 05, as the mole fraction of compo-
nent 2 (x,) was decreased from 1 to 0. The values for the
pure systems (x,=1 or 0) are in agreement with previous
results from both CFM (Ref. 25) and cleaving.'®** These
results are consistent with those by Asta et al.?® for Ni/Cu in
that the interfacial free energy is decreased upon the addition
of a lower melting point solute. In addition, although the
changes in vy anisotropy were seen to be small, they were
predicted to be sufficiently large to affect qualitative changes
in the dendrite morphology. These results complement the
current study because, while Becker et al. examined the ef-
fect on y on the alloying of two-particle types of identical
size but differing energy scales, the current study is focused
on the effect of alloying of two-particle types that differ in
size, but have equal energy scales.

II. SYSTEM

The interaction energy for the binary hard-sphere system
is defined as

®, ri.<0'l..
V(rij)z{o ] j

where i and j index particle type (1 or 2). We assume that the
hard spheres are additive, so that o,=05; is the arithmetic
mean of o, and 0,,. This system is completely specified by
the total particle density, p, the mole fraction of one of the
particles (here x, is used), and the diameter ratio «
=0/ 0y, Which, without loss of generality, is assumed to be
less than unity (that is, the type 1 particle is assumed to be
the smaller of the two-particle types). For convenience, we
define the reduced number density (p=N/V) using the larger
particle diameter (o,) to define the length scale

1
rij = 0jj W
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FIG. 1. Phase diagram of a binary hard-sphere system with a
=0.9. The data are taken from simulation by Kranendonk and Fren-
kel (Ref. 29). The melt and crystal are represented by squares and
circles, respectively. The solid squares and circles correspond to the
coexistence states used in the present work.

p* = po,=p|+p;.

where p| and p; are the similarly defined reduced number
densities for the small and large particles, respectively. An-
other useful measure is the packing fraction, which is defined
as the fraction of the total volume of the system occupied by
the particles

n=m1+ M,

where the individual packing fractions #; and 7, are
ma’py/6 and mp5/6, respectively. Using o, as the length
scale and noting that the only energy scale in the system is
kgT, where kg is Boltzmann’s constant and 7T is the tempera-
ture, we can define the reduced pressure and interfacial free
energy as

Po
Pr=—2 @)
kyT
* 70-52 (3)
kpT

For this initial study, we choose a system with a diameter
ratio of @=0.9. The reasons for this choice are twofold. First,
the phase diagram for this diameter ratio was determined
previously by Kranendonk and Frenkel.?>3! Second, the
structure and dynamics of the system have been well
characterized.’?> The pressure or composition phase diagram
is shown in Fig. 1. At this diameter ratio (0.9), solid-fluid
coexistence in the binary hard sphere exhibits significant
nonideal behavior, as seen by the presence of an azeotrope in
Fig. 1. The filled symbols in Fig. 1 represent the phase points
for which we have obtained estimates of the interfacial free
energy. For these points the phase-coexistence data used in
this study are summarized in Table I. We have not included
the azeotrope in this initial study. Over the entire composi-
tion range, the solid phase for the mixtures is a randomly
substituted face-centered cubic crystal. The precise pressures
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TABLE 1. The reduced pressure (P*), fluid and crystal packing
fraction (7, 7.), fluid and crystal mole-fraction (x;,x), from simu-
lation, are shown. The P; refers to the points on Fig. 1.

System P*(kpT/ 0?) U e by X,
Py 11.57 0.491 0.543 1.0 1.0
P, 12.23 0.4963 0.548 0.89 0.947
P, 13.13 0.4998 0.5498 0.75 0.865
Py 14.7 0.502 0.552 0.54 0.71
P, 16.19 0.510 0.549 0.38 0.47
Ps 15.87 0.491 0.543 1.0 1.0

and compositions in Table I differ slightly from those of
Kranendonk and Frenkel*'—we have optimized the phase
coexistence parameters to ensure a stress-free crystal phase
and a stable interface, see Ref. 33 for a discussion of the
procedure used. It should be noted that the phase points Ps
(x,=0) and P, (x,=1) are representations of a single-
component hard-sphere system and are thus identical when
scaled by their respective length scales.

III. METHOD

At present, most calculations of the crystal-melt interfa-
cial free energy via computer simulation involve one of two
qualitatively different approaches: thermodynamic integra-
tion or capillary fluctuation analysis. For a recent review, see
Ref. 34. Thermodynamic integration was first applied in
1986 to the solid-liquid interface by Broughton and Gilmer,'®
who utilized specially constructed cleaving potentials to cal-
culate y for the Lennard-Jones system. This method was
modified in 2000 by Davidchack and Laird,!” replacing the
complex cleaving potentials of Broughton and Gilmer with
cleaving walls made up of particles that are identical or simi-
lar to the atoms of the system of interest. This ‘“cleaving
wall” method has been used to determine vy for a number of
systems  including hard spheres,'””'®  Lennard-Jones
particles,>*3> repulsive soft spheres,'® and, most recently,
water.’® Unfortunately for the present work, the cleaving
method is not well suited to mixtures (except, perhaps, at an
azeotrope) because of the difficulty in constructing cleaving
walls that properly partition the interface with respect to the
differing composition of liquid and crystal.

The second approach is the capillary fluctuation method
in which the interfacial free energy is determined by exam-
ining the power spectrum of fluctuations in interfacial
position.!? This is the approach that we use in this work, as it
is well suited to mixtures. In most cases, the simulation box
is a thin slab, quite long in the direction normal to the inter-
face, but only a few lattice spacings in depth. Thus, the in-
terfacial position is a quasi-one-dimensional (quasi-1D)
curve, h(x), where x measures the distance along the width of
the simulation box, that is, in the direction perpendicular to
both the short direction and the interface normal. For a mi-
croscopically rough interface, statistical mechanics can be
used to obtain’” a relationship between A(x) and the interfa-
cial stiffness, y
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kT
bWyq*’

(@)= (4)

where h(q) is the 1D Fourier transform of A(x), W and b
denote the width and depth of the simulation box, respec-
tively, kp is the Boltzmann constant, and 7 is the melting
temperature of the bulk. The interfacial stiffness, 7, is de-
fined as®®

d2
7=ww+3§, (5)

where 6 is the angle between the instantaneous and average
interface normal. The first term in the definition of ¥y, y de-
termines the energy required to change the length of the in-
terface boundary, whereas the second term Z—;Y determines the
energy required for changes in local interfacial orientation.
One advantage to measuring % rather than vy itself is that ¥ is
significantly more anisotropic than v itself, allowing a more
precise resolution of interface anisotropy. Once ¥ has been
determined for several interfacial orientations, the corre-
sponding values of y can be obtained by first parametrizing
the orientation dependence of vy and then using the data for ¥
to determine the optimal parameter fit, from which the value
of vy at a variety of orientations can be determined. For our
parametrization we use the cubic-harmonic expansion due to
Fehlner and Vosko,?® which has been used successfully in
similar calculations on a variety of systems!???

3 3 3
3 17
y(h)/ yy=1+ 51<2 n?— —) + 62(32 n?+ 66H niz— —) ,
i=1 i=1 i=1

5 7
(6)

where (n;,n,,n3) are the Cartesian components of the inter-
face normal R, 7, is the value of y averaged over orienta-
tions, and €; and €, are parameters describing the anisotropy
in y.

To implement the CFM it is necessary to determine the
interface position, A(x), which requires a method for defining
individual atoms as “solid” or “liquid.” In this work, we use
a local order parameter proposed by Morris,?” as modified in
Ref. 40. For each configuration, the two interfacial position
functions, h(x,?) are determined. For each h(x, 1), the Fourier

amplitude, ﬁ(q,t), was determined using FFT.

The CFM has been used to determine y for a number of
materials, such as Ni,'” AL?® Ni-Cu,?® Ag and Au,*' hard
spheres,*® and Lennard-Jones particles.?> For the hard-sphere
and Lennard-Jones systems, the CEM has been found to give
results that agree within simulation error with cleaving wall
calculations on the same systems.?>** In general, CFM cal-
culations require larger system sizes (40 000—100 000 par-
ticles) than the cleaving wall method. Although the cleaving
wall method is generally more precise in its determination of
the magnitude of vy than the CFM, the CFM can determine
the anisotropy in vy to a higher precision than is possible in
cleaving. This is due to the fact that the CFM determines
directly the interfacial stiffness, %, which is much more an-
isotropic than 7, itself.
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TABLE II. The results for the interfacial stiffness, ¥, for the five
pressures listed in Table I for each of the four orientations
examined.
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TABLE III. Expressions for the interfacial free energy and stiff-
ness from Eq. (5), The notation (ijk) denotes the interface, and [ k]
denotes the short direction (see Ref. 25).

Pressure Stiffness Y(kT/ o'%)

P(kT/o3)  (100)[010] (110)[110] (110)[001]  (111)[110]
11.57 0.44(5) 0.458(12)  0.72(3) 0.76(3)
12.23 0.450(7) 0.447(11)  0.72(4) 0.849(13)
13.13 0.468(16)  0.494(12)  0.79(3) 0.806(17)
14.70 0.49(3) 0.467(17)  0.84(6) 0.87(3)
16.19 0.415(12)  0.43(4) 0.928(7)  0.926(9)

IV. RESULTS AND DISCUSSION

For our current molecular-dynamics (MD) simulations
of the @=0.9 binary hard-sphere system, we created samples
of coexisting crystal and melt for the pressures and compo-
sitions listed in Table I (with the exception of Ps, which
is identical to P, after scaling). For each pressure, simula-
tion cells for four different interfacial orientations were

(100)[010], (110)[110], (110)[001],

(111)[110], where the notation (ijk) denotes the interface
normal (z) and [hkl] denotes the short direction (y) of the
box. In all simulations, the short direction of the simulation
box (b) is about four to five fcc unit-cell spacings—small
enough that the interface position is quasi-one-dimensional.
The width (W) of the simulation box is in the range 10-15
times b to ensure that the range of the wave number g is
sufficient to determine % from the power spectrum [Eq. (4)].
The length of the simulation box normal to the interfacial
plane is chosen to be about 20 times the short direction,
which was determined to be sufficient to ensure that the bulk
behavior is obtained in the interior of the fluid and crystal
phases. The MD simulations were performed using the hard-
sphere algorithm of Rapaport.*? To ensure the construction of
stress-free equilibrium crystal-melt interfaces, we use the
protocol outlined in Ref. 33. For all interfacial orientations,
the number of particles used is approximately 40 000 with
simulation box dimensions averaging 5.50X 630X 1050,
these numbers vary slightly from orientation to orientation,
depending upon the system geometry.

After equilibration, each sample was simulated for 16 500
7 to collect averages, where 7= \rma'%/ kgT is a natural time
unit for binary hard spheres. The mass, m, is assumed to be

constructed: and

Interface vl v Y v
+s€+5€ —5€6~7€
(100)[010] 1+3¢+2e, 1-Ye-Te
1 — € —T,€ ThE+ T, E
(110)[170] 1-+e-Se I-Ga+ie
(110)[001] 1-te-Le 1+55e+5e
(111D)[110] I-a+ae 1+Ya-5'e

identical for all particles, independent of particle type. Snap-
shot configurations were sampled every 3.37, giving a total
of 5000 configurations for the data analysis. For each pres-
sure and orientation, the interfacial stiffnesses were calcu-

lated using Eq. (4) from a log-log plot of (h(q)) versus g.
These are tabulated in Table II.

Once the interfacial stiffnesses for a given pressure are
known for several orientations, the magnitude and anisotropy
of the interfacial free energy is obtained by fitting the stiff-
ness data to the three parameters of the Fehlner and Vosko
cubic-harmonic expansion [Eq. (6)]: vy, €, and €,. The spe-
cific expressions? for both y and ¥ in terms of the Fehlner-
Vosko parameters are shown in Table III for each of the
orientations studied. The fitting is performed using least-
squares linear regression. The results are summarized in
Table IV. For the single-component system (Po*z/ kT
=14.70), our results are in agreement (within the 20 error
bars) with the results of Ref. 40.

Figure 2 shows v, €, and ¢, as a function of coexistence
pressure (at fixed temperature) for the =0.9 binary hard-
sphere system. This plot shows that, at constant temperature,
the orientationally averaged interfacial free energy increases
with increasing pressure, and therefore with increasing mole
fraction of the smaller diameter particle (x;). The anisotropy
parameter €; is constant at low pressures but increases as the
system approaches the azeotrope in Fig. 1. The anisotropy
parameter €, is, to a good approximation, independent of
alloying in this system. For comparison, the anisotropy mea-
sures (Y100~ ¥111)/2%0 and (10— ¥111)/2 are also shown
in Table IV. From this data, the following inequality is
shown to hold or all pressures (and compositions) studied:

Y100 = Y110 = Yii1-

TABLE IV. The calculated orientationally averaged interfacial free energy (7,), Fehlner and Vosko an-
isotropy parameters (€, and €,), and anisotropy differences for the binary hard-sphere system for a variety of

pressures (and compositions).

P(KT/ o) YokT/ 03) € 5) (Yi00=7111) /2% (yiio=¥11) /2%
11.57 0.591(17) 0.075(12) -0.0036(13) 0.051(8) 0.038(5)
12.23 0.617(9) 0.078(6) —-0.0062(8) 0.053(4) 0.043(3)
13.13 0.633(9) 0.077(5) —-0.0030(7) 0.052(3) 0.037(2)
14.70 0.663(18) 0.085(10) —-0.0048(13) 0.058(7) 0.044(5)
16.19 0.667(11) 0.117(5) -0.0047(12) 0.079(3) 0.057(3)
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FIG. 2. Results for the interfacial free energy of a @=0.9 binary
hard-sphere system as a function of coexistence pressure: (a) orien-
tationally averaged reduced interfacial free energy, y(*):yoo’%/ kgT,
(b) anisotropy parameter €;, and (c) anisotropy parameter e;.

Recently, Haxhimali e al.® used phase-field simulations
to correlate dendritic growth morphology with the anisotropy
of the interfacial free energy. Based on this analysis, our
calculated values of €; and €, for the binary hard-sphere
system (a=0.9) are consistent with the formation of den-
drites with a (100) primary growth direction. In the binary
Lennard-Jones simulations of Becker et al.,” the calculated
anisotropies in y indicated a similar (100) primary dendrite
growth direction, although the LJ system approaches the
(100)/hyperbranched dendrite boundary as the system ap-
proaches a 50:50 mixture. In the LJ simulations, which have
energy anisotropy but no size anisotropy, the anisotropy pa-
rameter €, is roughly independent of concentration, whereas,
€, shows considerable variation. Thus, it can be speculated
that size asymmetry affects €, primarily, but energy asymme-
try has more of an effect on the value of e,.

In Table IV and Fig. 2, the data for 7, for binary hard-
sphere systems are shown as a function of pressure at fixed
temperature, 7. This makes comparison difficult with the
Ni/Cu simulations of Asta et al.,”® or the binary LJ simula-
tions of Becker ef al.,” because in those studies the concen-
tration changes are performed at fixed pressure by varying
the coexistence temperature. Due to the unique scaling be-
havior of hard spheres (that is, both the pressure and interfa-
cial free-energy scale linearly with temperature along the co-
existence curve) it is possible to scale the hard-sphere data to
vary coexistence temperature at constant pressure. If we fix
the pressure to equal the single-component pressure, P, then
we can scale the interfacial free energy as follows:

P

0
Ypo= Yo X X (7)
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FIG. 3. The orientationally averaged interfacial free energy ver-
sus temperature (relative to the single-component temperature) for
the binary hard-sphere system in which the concentration of solute
is increased at fixed pressure. The solute concentration increases
from left to right in the plot.

where v, is the orientationally averaged interfacial free en-
ergy measured at a constant T (here equal to Ty, the coexist-
ence temperature of the pure system) and yp is the interfa-
cial free energy measured at constant pressure (here equal to
Py) with a temperature T=T X (P,/ P). The units of yp are
kTy/ o'% Note that, the values of €; and €,, being dimension-
less, are unaffected by the scaling. Figure 3 shows yp plot-
ted as a function of temperature relative to the single-
component temperature, 7/ 7. As expected, at fixed pressure
the melting temperature is lowered as the solute concentra-
tion is increased. In this plot, we see that the interfacial free
energy decreases as the concentration of lower melting point
material (type 1) is added at fixed pressure. This is consistent
with both the Ni/Cu (Ref. 26) and binary LJ results.”

V. SUMMARY

Through an analysis of capillary fluctuations in interfacial
position, we have determined the diordered-fcc-crystal/melt
interfacial free energy, 7y, for a binary hard-sphere mixture
with a diameter ratio, @=0y;/0,,=0.9. The value of y was
determined at several points along the pressure-composition
phase diagram, which has been previously determined by
Kranendonk and Frenkel.? For this system, the magnitude of
v is shown to increase when mole fraction of the smaller
component (x;) is increased at constant temperature. For
comparison to two other such simulations on Ni/Cu (Ref. 26)
and Lennard-Jones’ binary mixtures, both of which involve
changing composition at constant pressure, we have used the
scaling relations for hard-sphere systems to transform our
data to constant pressure. After rescaling, we find that the
magnitude of y decreases with increasing x; at constant pres-
sure, which is consistent with both the Ni/Cu and LJ simu-
lations in that the interfacial free energy decreases with ad-
dition of a lower melting point solute at constant pressure.
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Our results for the anisotropy in 7y show that the inequal-
ity ¥100>> 110> 7111 holds for all pressures (and composi-
tions) studied. This is consistent with previous results on
Ni/Cu (Ref. 26) and Lennard-Jones.” Our results also show
that the anisotropy in 7y for the @=0.9 binary mixtures in-
creases with increasing x;, approaching the azeotrope. Using
the recent work of Haxhimali ef al.,® which correlated the
anisotropy in y with expected dendrite growth morphology,
we find that the calculated anisotropy of this binary hard-
sphere system is consistent with a primary dendrite growth
direction of (100).
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